
'/" NASA-CR-191281

November 1992 UILU-ENG-92-2245

CRHC-92-27

Center for Reliable and High-Performance Computing

/fA J-J J3

lsi2oy
/

p, TJ

LAZY CHECKPOINT
COORDINATION FOR
BOUNDING ROLLBACK
PROPAGATION

Yi-Min Wang and W. Kent Fuchs

(NASA-CR-19128I) LAZY CHECKPOINT

COOROINATION FOR BOUNDING ROLLBACK

PROPAGATION (Illinois Univ.) 23 P

N93-13375

Uncl _s

G3/32 0131804

Coordinated Science Laboratory

College of Engineering --

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

7 :]-\]i --_

Approved for Public Release._: Distn%ution Unlimited_

J

UNCL_\SS 1FI ED
CuR;li'Y CLA$SI(IArIoN OF TH_ PAGE

iii i

fa. REPORT SECLJ'RITYCLASSIFICATION

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY

'2b. DECLASSlFICATIONIDOWNGRAOING SCH'EDULE

i

REPORT OOCUMENTATION PAGE
ii

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-92-2245 CRHC-92- 27

6a. NAME OF PERFORI_IING ORGANIZATION

Coordinated Science Lab

University of Illinois
i

6<. ADDRESS (O_, State, and ZlPCode)

ii01 W. Springfield Avenue

Urbana, IL 61801

8,1. NAME OF FUNDING ISPONSORING

ORGANIZATION 7a

_m

7b

i li n

_'16b.OFFI({{SYMBOL

i (If aDDlicable)

N/A

I OFFICE SYMOOL

8b. (If a_ica_.)

i [71]

lb. RESTRICTIVE MARKINGS

None
3 DISTRIBUTIONIAVAILABILITY OF REPORT

Approved for public release;

distribution unlimited

S. MONITORING O-RGANIZAT1ON REPORT NUMBER(S)

7=. NAME OF MONITORING ORGANIZATION

NASA ICLASS ONR

I I , i

7b. AOORESS(Ch_,$Mte, lndZIPCodl)

Moffet Field, CA 94053

Washington DC 20552 Arlington VA 22217

9. PROCUREMENT INSTRUMENT IDENTII=ICaTION NUMBER '

I ii

1I. TITLE (include Security rJassification)

Lazy Checkpoint Coordination for Bounding Rollback Propagation

• I

12. PERSONAL AUTHOR(S)
WANG, Yi-Min and W. Kent _uchs

mm

13e. TYPE OF REPORT J13b. riME COVERED 1"
Technicql I FROM TO

I II _ ii i

16. SUPPLEMENTARY NOTATION

ii

,1110. SOURC_ O_ _UN0JN_ NU_B_S
II I

ELEMENT NO. . NO. ACCESSION NO.

I Ul IIII • . i

DATE OF REPORT O'emr, Month, 0,1}) I $" PAGE COUNT1992 November 20 22

,7. COSAT,
F,ELD GROUP SUB-GROU,'

I I I

1_.SUgJECTTERMS(Com_ueo_verreif_ce_u_l_ and lden_ by bi_k numbed

fault tolerance, independent checkpolntlng, checkpoint

coordination, rollback recovery

!9.ABSTRACT (Continue on revere if nece_3aP/ and identify by block number)

Independent checkpointinK allows maximum proceM autonomy but suITers from potential domino effects.

Coordinated checkpointing eliminates the domino effect by sacrificinga certain degree of process autonomy.

In this paper, we propose the technique of lazy checkpoint coordination which preserves process autonomy

while employing communication-induced checkpoint coordination for bounding rollback propagation. The

introduction of the notion of laziness allows a flexible trade-oR between the cost for checkpoint coordination

and the average rollback distance. Worst-case overhead analysis provides a means for estimating the extra

checkpoint overhead. Communication trace-driven simulation for several parallel programs isused to evaluate

the benefits of the proposed scheme for real applications.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 121.ABSTRACT SECURiTY CLASSIFICATION "

[] UNCLASSIFIEO_JNLIMITEO [] SAME AS RPT, E_ DTIC USERS I ,, U=nc=_als ,sif led

22a NAME OF RESPONSIBLE INDIVIDUAL J22bTELEPHONE (Ir_lude Are# Code) 122c. OFFICE SYMBOL

I [
r I

DO FORM 1473, 84 MAR 83 APR edition may be used unt=l e_haus_ed. SECVRITY CLASSIFICATION OF THIS PAGE
All other edtt=ons are obsolete.

Irt_Cf,Aq q T _T r,r',

Lazy Checkpoint Coordination for

Bounding Rollback Propagation I

Yi-Min Wang and IV. Kent Fuchs

Primary contact:Yi-Min Wang

Center for Reliable and High-Performance Computing

Coordinated Science Laboratory
1308 West Main Street

University of Illinois

Urbana, IL 61801

E-mail: ymwang_crhc.niuc.edu

Phone: (217) 244-7161

FAX: (217) 244-5686

Abstract

Independent checkpointingallowsmaximum processautonomy but suffersfrom potentialdomino

effects.Coordinated checkpointingeliminatesthe domino effectby sacrificinga certaindegreeof

processautonomy. In thispaper,we propose the techniqueoflazy checkpointcoordinationwhich

preservesprocessautonomy while employing communication-induced checkpoint coordinationfor

bounding rollbackpropagation. The introductionof the notionof lazinessallowsa flexibletrade-

offbetween the cost for checkpoint coordinationand the average rollbackdistance. Worst-case

overhead analysisprovidesa means forestimatingthe extracheckpointoverhead. Communication

trace-drivensimulationforseveralparallelprograms isused toevaluatethe benefitsofthe proposed

scheme forrealapplications.

Key words: fault tolerance, independent checkpointing, checkpoint coordination, rollback recovery

1Acknowledgement: This research was supported in part by the National Aeronautics and Space Administration
(NASA) under Grant NASA NAG 1-613, in cooperation with the Illinois Computer Laboratory for Aerospace Systems
and Software (ICLASS), and in part by the Department of the Navy and managed by the Office of the Chief of Naval
Research under Contract N00014-91-J-1283.

1 Introduction

Independent (or uncoordinated) checkpointing [1-3] for parallel and distributed systems allows

maximum process autonomy and independent design of recovery capability for each process. How-

ever, since the rollback of a message sender requires the sympathetic rollback [4] of the receiver,

the domino effect [5] is in general possible unless certain mechanisms are incorporated into the

checkpointing and recovery protocol to guarantee recovery line [6] progression. Existing techniques

for achieving domino-free rollback recovery can be classified into two primary categories [7]. The

first category can be called the minimum sympathetic rollback approach in which either the rollback

of a process will never undo any messages sent or the receiver of an undone message M will try to

roll back to the state immediately before receiving M. Wu and Fuchs [8] insert a checkpoint imme-

diately after each message is sent so that no sympathetic rollback is necessary for any failure. Kim

et el. [9, 10] and Venkatesh et al. [11] employ dependency tracking and insert extra checkpoints

before processing any messages that result in new dependency. The state.interval based approach

[12-21] models the program execution as consisting of a number of state intervals, each started by

processing a new message. Message logging in addition to checkpointing is employed to effectively

insert an "checkpoint" (in the optimized form of a message log) before each message receipt.

The second category can be called the bounded rollback propagation approach. Corresponding

checkpoints (based on the ordinal n_tmbers) on different processes are required to coordinate with

each other in order to form a recovery llne to bound the possible rollback propagation. Usually,

whenever a checkpoint is initiated by one process, all other processes are informed and required

to take appropriate checkpoints to guarantee the resulting set of checkpoints is consistent [22-27].

The number of processes required to participate in each checkpointing session can be reduced by

monitoring the recent message exchanging history [28]. For systems with clock synchronization

and/or bounded message transmission delay, the cost for checkpoint coordination can be further

reduced [29-32].

We will use the term eager checkpoint coordination for the coordination action performed when

checkpoints are initiated (as described above). In contrast, processes in a system with lazy check-

point coordination only coordinate their corresponding checkpoints when the message communica-

tionindicatesa violationof checkpoint consistency2. Briaticoet M. [35]forcethe receiverof a

message M to take a checkpointbeforeprocessingM ifthe sender'scheckpointordinalnumber

tagged on M isgreaterthan that of the receiver.Checkpoints with the same ordinalnumbers

are thereforealways guaranteed to be consistent.However, the run-time overhead may be pro-

hibitivelyhigh due to the possiblyexcessivenumber of extrainduced checkpoints.In thispaper,

we generalizethe concept of communication-induced checkpoint coordinationby introducingthe

notion of laziness Z as a measure of the frequency for performing coordination. Only corresponding

checkpoints with ordinal numbers nZ, where n is an integer, axe required to be consistent with each

other and form the recovery llne for bounding rollback propagation. Overhead analysis and exper-

imental evaluation show that lazy checkpoint coordination can significantly reduce the number of

extra checkpoints and offer a flexible trade-off between run-time overhead versus average rollback

distance.

The paper is organized as follows. Section 2 describes the system model and the checkpointing

and recovery protocol; Section 3 gives the motivation and the algorithm for lazy checkpoint coor-

dination; Worst-case overhead analysis is presented in Section 4 and the trace-driven simulation

results for several parallel programs are discussed in Section 5.

2 Checkpointing and Rollback Recovery

The system consideredin thispaper consistsof a number of concurrent processesfor which

allprocesscommunication isthrough message passing.Processesare assumed to run on fail-stop

processors[36]and each processorisconsideredas an individualrecoveryunit [15].We do not

assume the piecewisedeterministicexecutionmodel [20].

During normal execution,the stateof each processorisperiodicallysaved as a checkpointon

stablestorage.Let CPi,k denote the kth checkpointofprocessorpl with k > 0 and 0 < i < N - I,

where N is the number of processors.A checkpointintervalisdefined to be the time between

two consecutivecheckpointson the same processorand the intervalbetween CPi,k and CPi,(k+1)

2The basic idea motivating the lazy checkpoint coordination is similar to the concepts behind the lazy release

consistencyin distributed shared memory [33] and the laz!/message cancellation in optimistic distributed simulation

systems [34].

is called the kth checkpoint interval. Each message is tagged with the current checkpoint ordinal

number and the processor number of the sender. Each processor takes its checkpoint independently

and updates the direct dependency information table (or input table [2]) as follows: if at least one

message from the ruth checkpoint interval of processor pj has been processed during the previous

checkpoint interval, the pair (j, m) is added to the table entry for the new checkpoint.

A centralized garbage collection algorithm [37] can be periodically invoked by any processor•

First, the dependency information for all existing checkpoints is collected to construct the checkpoint

graph [1] (Fig. l(b)). All checkpoints corresponding to the vertices marked "X" in Fig. 1 (b) axe

determined to be garbage by the algorithm and can therefore be discarded.

When processor Pl initiates a rollback, it sends out a rollback_initiating message [2] to ev-

ery other processor to request the up-to-date dependency information. Each surviving processor

takes a virtual checkpoint (represented by the dotted vertex in Fig. 1 (c)) upon receiving the roll-

back_initiating message. After receiving the responses, Pi constructs the extended checkpoint graph

[1] and executes the rollback propagation algorithm shown in Fig. 2 to determine the recovery line

(the shaded vertices in Fig. 1 (c)). A rollback_request message is then broadcast to roll back each

processor according to the recovery line (Fig. 1 (d)).

There axe two primary checkpoint consistency situations. In Fig. 3(a), the checkpoints CPi,k

and CPi,m are inconsistent because of the orphan message [31] M_. In Fig. 3(b), CP_,k and CPj,,_

can become consistent if the channel-state message [24] Mb is properly recorded. In this paper, we

assume either every message is synchronously logged a [12,14] or an end-to-end transmission protocol

can guarantee the redelivery of the lost channel-state messages [28]. Thdrefore, checkpoints like

CP_,k and CPj,m in Fig. 3(b) axe considered consistent.

3 Lazy Checkpoint Coordination

3.1 Motivation

We will refer to the checkpoints initiated independently by each processor as basic checkpoints and

those triggered by the communication as induced checkpoints. Fig. 4(a) illustrates the situation

aDiscussions on incorporating an asynchronous logging protocol into the independent checkpointing scheme de-
scribed in this section can be found in [3].

po + + ÷ +

,,+\+/+i+l

P3 +

Po

Pl

P2

P3

Po

Pl

P2

P3

Co)

Po

Pl

P2

P3

(c) (d)

Figure I: Checkpointing and rollbackrecovery(a)the checkpointand communication pattern (b)

checkpointgraph forgarbage collection(c)extended checkpointgraph when P0 initiatestherollback

(d) checkpointgraph afterrecovery.

/* CP stands/or checkpoint */

/* Initially, all the CPs are unmarked */

Include the latest CP of each processor in the root set;

Mark all CPs strictly reachable from any CP in the root set;

While (at least one CP in the root set is marked) {
Replace each marked CP in the root set by the latest unmarked CP on the same

processor;

Mark all CPs strictly reachable from any CP in the root set;

)
The root set is the recovery line.

Figure 2: The rollback propagation algorithm.

4

Pi

CP i,k
+

CP i.k
Pi +

pj +
CPj_ CPy.m

(a) Co)

Figure 3: Checkpoint consistency (a) orphan message (b) channel-state message.

where the communication patternrendersmost ofthe basiccheckpointsuselessforrollbackrecovery

and the only recovery lineisat the very beginning of the execution. A straightforwardway of

avoidingsuch unbounded rollbackpropagationistoperform eagercheckpointcoordinationasshown

in Fig 4(b). Whenever a processorinitiatesa basic checkpoint,coordinationmessages (dotted

arrows)are broadcast to allother processorsto requestthe cooperationin making a consistentset

of checkpoints[23].Let B be the totalnumber of basiccheckpointsand I be the totalnumber of

induced checkpoints.We definethe inductionratio7_ as

I
ze= -

B

which isa measure of the overhead forperforming communication-induced checkpointcoordination.

Clearly,eager checkpointcoordinationhas T_ = N - 1 and willresultin largerun-time overhead

when N islarge.In addition,the N - 1 coordinationmessages per checkpoint sessionconstitute

another overhead.

The large overhead of eager checkpoint coordination results from its pessimistic nature. More

specifically, when pl in Fig 4(b) initiates its first basic checkpoint bi,i 4, it "pessimistically" assumes

that messages like M1 will exist in the future and cause bl,1 to be inconsistent with its corresponding

checkpoint bo,i on 19o. In order to guarantee hi.1 belongs to a useful recovery line, pl "eagerly"

requests p0's cooperation at the time hi,1 is initiated. In contrast, lazy checkpoint coordination

adopts an optimistic approach by assuming that b0,1 will be consistent with bl,1. If the assumption

turns out to be true, no explicit coordination is necessary. An extra checkpoint will be induced on po

only when the message M1 indicates that the assumption has failed (Fig 4(c)). From another point

of view, such a scheme "lazily" delays the broadcast of the coordination messages and implicitly

4bi,k denotes the kth basic checkpoint of pi and CPi,k denotes the kth checkpoint of pi.

PO

Pl

+1/+1:+1/+1/+1
+ + i+ + +

(a)

PO

Pl

+ i!11;
b I,I (b)

PO

Pl

+

4-

Po q=

Pl +

od 4- t 4. t_ 4.

I l1171/1 + +/:1
b 1,1 (c)

o,t _ _o,2 + +

1+/l+/1
b 1,1 b 1,2 (d)

4. Basic checkpoint _ Induced checkpoint

Figure 4: Communication-induced checkpointing (a) the checkpoint and communication pattern (b)

eager checkpoint coordination (c) lazy checkpoint coordination with laziness = 1 (d) lazy checkpoint

coordination with laziness = 2.

6

piggybacks them on future normal messages. Both checkpoint and message overhead can therefore

be reduced.

However, given a basic checkpoint pattern, the number of induced checkpoints in the above

scheme is determined by the communication pattern and is not otherwise controllable. In the worst

case, the induction ratio _ can still be N - 1 as illustrated in Fig 4(c). In order to further reduce

the overhead, we can perform even "lazier" coordination by only enforcing the consistency between

checkpoints CPo,nz and CPI,nZ where Z is called the laziness and n is an integer. Fig 4(d) shows the

case with g = 2. No checkpoint is induced until the message M2 indicates the inconsistency between

bl,2 and bo,2. The number of induced checkpoint can be reduced from 8 (Fig 4(c) with Z = 1) to 2 at

the cost of potentially larger rollback distance. It becomes clear that lazy checkpoint coordination

can provide a trade-off between the checkpointing overhead and average rollback distance.

3.2 The Protocol

Our approach is to incorporate the lazy checkpoint coordination into the independent checkpoint-

ing scheme as a mechanism for bounding rollback propagation. Therefore, the checkpointing and

rollback recovery protocol can be built on top of the one described in Section 2. During nor-

real execution, each processor still takes its basic checkpoints independently. The laziness Z is a

predetermined-determined system parameter known to all processors. Suppose a processor pj with

current checkpoint ordinal number r is about to process a message M with sender pi's ordinal

number s. If pj detects the following condition to be true

l= L4zJ > L IZJ,

it realizes that CPi,tz and CPj,tz will be inconsistent unless an extra checkpoint is induced before

M is processed. We describe a possible implementation as follows. Each processor pj maintains a

variable V which is initialized to be Z and incremented by Z each time CPj,nz is taken. Before pj

processes a message M with s >_ V, it is forced to take the checkpoint CPj,tz and update its ordinal

number counter to IZ. In other words, if M was sent after CPidz was taken, it must be processed

by pj after CPj,tz is induced. Notice that ail checkpoints CPj,rn with r < m < IZ become dummy

checkpoints which overlap with CPjdz.

In addition to the centralized garbage collection algorithm [37], a simple distributed algorithm

can alsobe used for low-costgarbage collection.The basicideais that ifthe currentcheckpoint

ordinalnumber of every processorhas exceeded nZ, allthe checkpointsCPj,m with m < nZ

becomes obsoletewith respectto the recoverylineconsistingof {CPi,nz :0 <_ i <_ N - 1) and

thereforecan be discarded.Each processorpj needs to maintain an array CP_progress[N]which

recordsthe highestordinalnumber foreveryotherprocessorknown topj based on the information

included in each message. More efficientgarbage collectioncan be achieved by piggybacking the

CP_progress[N] array on the normal messages periodicallyin order to maintain the "transitive"

knowledge ofcheckpointingprogressofeach processor[38].

Although the set of checkpoints {CPi,nz : 0 <_ i < N - 1} always forms a recovery line, the

two-phase recovery procedure described in Section 2 should still be used to search for the most

recent recovery line in order to minimize the number of rolled-back processors and the rollback

distance. One possible optimization is that the dependency information corresponding to the

garbage checkpoints as determined based on the CP_progress[N] array needs not be collected, thus

reducing the size of the responses to the rollback_initiating message and the time for constructing

the checkpoint graph.

4 Overhead Analysis

Sincethe checkpointoverhead of the lazycheckpointcoordinationscheme depends on the run-

time dynamic communication pattern,itisimportant to analyzeand estimate the potentialextra

overhead resultingfrom the induced checkpoints.We willfirstshow that,without any constraints

on the relativecheckpointingprogressofeach processor,the worst-caseinductionratiois(N- I)/Z.

While under certainconditionswhich are typicallymet by realapplications,the upper bound on

the inductionratiocan be shown to be independent of N.

4.1 Worst-Case Analysis

Our approach to worst-case analysis consists of two steps. First, given any fixed basic checkpoint

pattern, we construct the worst-case communication pattern. Secondly, given any system with N

processors, we derive the worst-case induction ratio as a function of N and the laziness Z.

8

In this section,we assumeeach checkpoint CPI,_ is associated with a global time stamp

t(C Pi,k) s. For any checkpoint and communication pattern P, define C P_n z = C Pirnz 6 if t(C Pir,_z) <_

t(CP_,nz) for all 0 < j _< N - 1, i.e., CP_ z denotes the earliest checkpoint _nZ among all pro-

cessors. Given any basic checkpoint pattern and the laziness Z, we construct the communication

pattern g0 as follows. Suppose CP.r,°nz -- CPir°nz. Then pi sends a message to every other processor

and induces CPjP°nz with t(CPf°_z) _, t(CPir,°z) on processor pj. Fig. 5(a) shows an example of 790

with Z = 2. We will call the interval between t(VPr.,__l)z) and t(CP_°nz) the induction session

#n which includes all the induced checkpoints CPf°ng. The following lemma will be used to prove

790 is the worst-case communication pattern in terms of the induction ratio.

r'o t(CP_nz) /or arbitrary com-LEMMA 1 Given a basic checkpoint pattern, we have t(CP'.,nz) <

munication pattern 7_ and any positive integer n.

Proof. The proof is given by induction on n. Since there can not be any induced checkpoint

before t(CP_z) for any :P, t(CP.P,z) only depends on the progress of taking basic checkpoints.

Therefore, t(CP.P,°g) = t(CP.P,g) and the case n 1 is true. For the case n = k, suppose CP_kg =

CPi_kz. All the Z checkpoints CPi_ with (k - 1)Z < l < kZ must be basic checkpoints because they

can not be induced before t(CP_kz). Also, t(CP_(k_l)Z) <_ t(CPi_k_,)z) <_ t(cei_) <. t(cei_,kz)

by definition. Suppose the case n = k- 1 is true, i:e., t(CP:_k_l)z) _< t(CP_(k_x)z). We then have

P0
CPi_,kg = CPi_ ° where q > kZ because t(CPi_,_k_l)g) _ t(CPJ.,(k_l)g) by construction and there are

at least Z basic checkpoints of Pi, i.e., the CPi,_'s , between t(CPiP,_k_,)z) and t(CPi_,_z). Finally,

_o Po
t(CP'.,kz) <_ t(CPi,kz) <_ t(CPi_,_) = t(CPiP, kz) = t(CPT, kZ)

'o t(CP,_z) for all positive integer n.and we have proved t(CP:,,z) < []

LEMMA 2 Given a basic checkpoint pattern, 790 is the worst-case communication pattern resulting

in the largest induction ratio.

5This is only for the purpose of presentation.

6We will use CP, P,k to denote the kth checkpoint of p_ in the checkpoint and communication pattern P. When it is

clear from the context that the basic checkpoint pattern is fixed, we also use the same notation for the communication

pattern _.

PO

Pl

P2

PO

Pl

CP Vo Vo
+ + + _ 4-_ + e + CP__+,_ _q

4- q-

4- .4-

__ Inductionsession #1

cP,'.l

l_1 4- m

Inductionsession#2_

4.

4-m .4-

eo
CP* Io

4-

+

.4-_

+ + 4- .4.

cea cP&

(a)

Co)

Figure 5: (a) Worst-case communication pattern (b) worst-case checkpoint and communication

pattern.

Proof. Let I_P denote the total number of induced checkpoints with ordinal number nZ for

the communication pattern 7), and let q = max{n : I_ _ 0}. be the maximum among n's such

that I_ _ 0. Clearly, I_ < N i. Since vo- t(CP'..qz) < t(CP.P.qZ) by Lemma 1, the checkpoint and

communication pattern with 7)o must consist of at least q induction sessions. Let I p denote the

total number of induced checkpoints for 7), we then have

IP°>- Z IP_°=q'(N-1) >- Z I_=[1°"

Finally, because the number of basic checkpoints is fixed by the given basic checkpoint pattern, 7)o

has the largest induction ratio among all possible communication patterns. []

Lemma 2 states that, for worst-case analysis of the induction ratio, we need only consider the

10

communication pattern 790 for each basic checkpoint pattern. Because the induction sessions are

well-defined in such patterns (as shown in Fig. 5), the derivations can be simplified.

THEOREM 1 For any system with N processors and laziness Z, the induction ratio

N-1

n<__y__.

Proof. For any basic checkpoint pattern with its corresponding P0 which results in L complete

induction sessions, the number of induced checkpoints is L. (N - 1). Let Bn denote the number of

basic checkpoints within the induction session #n, we have B, >_ Z for all 1 < n < L because the Z
_o _o

checkpoints U-PP°i,twith (n - 1)Z < l _< nZ can not be the induced checkpoints if CP'_,, z = CPi,nz.

Therefore, the induction ratio

R= L.(N-I) < L.(N-I) N-1

,<.<_LB,, + BL+I - L. Z Z

0

Fig. 5(b) shows an example of the worst case for N = 3 and Z = 2. The stacked checkpoints

-pPo-p_0 . overlaps with the induced checkpoint G' i,2,vindicate the fact that each dummy checkpoint (.; i,2n-_

Since it takes exactly Z - 2 basic checkpoints to induce every N - 1 - 2 checkpoints, the induction

ratio is (N - 1)/Z = 1.

4.2 The Upper Bound under" Constraints

The upper bound in Theorem 1 was derived under no constraints on the program behavior. Since

it is of order O(N), the induction ratio may be unacceptably high for systems with large number

of processors. However, a closer look at the two patterns in Fig. 5 reveals that the situation in (b)

which results in the worst-case induction ratio is less l_kely to happen for real applications where"

the processors typically regularize their paces in taking basic checkpoints, as shown in (a). For

example in Fig. 5(b), it is very likely for P0 to take at least one basic checkpoint between CP.r,_

and CP_. We can show that under the following constraints which are usually satisfied in real

applications, the upper bound on the induction ratio is independent of N.

Constraint 1: Let Q denote the ratio of the maximum to the minimum length of the basic check-

point interval. Although each processor is allowed to take its basic checkpoints at its own pace,

11

Q istypicallybounded by a smallconstant(_. For example, Q is2 or 3 forour experiments

describedin the next section.

Constraint 2: Only the caseswith Z > 2 willbe consideredforrefinedupper bounds because the

worst caseforZ = I isalways achievableeven when Q issmall (seeFig.4(c)).

Constraint 3: The applicationsemploying checkpointingand rollbackrecoveryaxe usuallylong-

running jobs,which impliesZ- L isquitelarge.(RecallL isthe number ofcomplete induction

sessionswith :Po.)In particular,we assume Z. L _ rQ].

THEOREM 2 Under the above constraints, the induction ratio T_ < rQ].

Proof.Again we only have to consider:P0foreach basiccheckpointpatternforthe worst case.

Let M denotethe smallestintegersuch thatM.(Z-1) > Q. SinceZ > 2 by Constraint2,we have

M < rQ]. We definean M-induction sessionas consistingof M consecutiveinductionsessions.

There are then LM = [L/MJ complete M-induction sessions,each containingM- (N - i)induced

checkpoints.We considerthe followingtwo cases.

(a) N < M: By Theorem 1,

N-1

< ---2-- < N - 1 < N < M < F@l. " (2)

(b) N > M: Firstwe considerthe number of induced checkpointsI. IfZ > Q + i, then M = 1

and I = L. (N - 1). IfZ < Q + 1, Z. L :_ r0]in Constraint3 impliesL :_ rQ]. Since

M _< rQ1,we have L/M :_ 1 and

I=LM.M.(N-1)+ _ Ij:_LM.M.(N-1).
LM.M+I<k<L

In either case, I _ _M • M (N - 1)

Now consider the number of basic checkpoints B' For each induction session #n, the processor

Pi with _pPo P0¢J i,nz= CP'_,_zmust contributeZ basiccheckpointsand thereforethe length of

each inductionsessionisat leastZ- I basiccheckpointintervals.Within each M-induction

P0 P0
session,at leastN - M processorsdo not have CPj,_z = CP'.,_zforany n. By the definition

12

of Q, these N- M processorsmust each contributeat leastL__z._j basic checkpoints.

Therefore,

and

B _>iN. (i. Z + (N - M). [U. (Zo- 1)j)

s i. (N - i)
r_=_< - i. Z + (_ - i). L_C_J

Since Z > 1 and _-_ > 1 by definition,we have

(3)

7_< M.(N-1) <M_< [Q1. (4)
M+(N-M)

[]

Notice that Eqs. (3) and (4) axe still valid if we replace M with any m such that M < m < rQ1.
By combining Theorem 1, Eq. (2) and Eq. (3), we then define the refined upper bound, called the

Q - bound, as follows.

bound = minM<,,,<fQ]{ m. (Y - 1) j))Q
m. z + IN >_.m]. ((_ - m). i_ (5)

where [N > m] = 1 if N > m is true and 0 otherwise.

Fig. 6(a) compares the worst-case induction ratio with the Q-bound where Q = 2 for N = 8, 16

and 32. While the worst-case ratio (N - 1)/Z clearly grows with N, the Q - bound is relatively

insensitive to N. Fig. 6(b) compares the worst-case induction ratio, which is equivalent to the

Q - bound with Q = co, with the Q - bound where Q varies from 2 to 5. Since our purpose of

introducing the Q - bound is to estimate the induction ratio for real applications in advance, the

insensitivity of the Q-bound to the exact value of Q suggests that an approximate value of Q suffices

for the estimation. Finally, notice that if Z is chosen to be at lea.st Q -{- 1, we have T_ < M = 1,

i.e., the number of induced checkpoints will never exceed the number of basic checkpoints.

5 Experimental Results

Four parallel programs written in the Chafe Kernel language are used for the communica-

tion tr_e-driven simulation. The Chafe Kernel has been developed as a medium-grain, machine-

13

Induction
Ratio

32

28

24

20

16

12

8

4

0

I I I i I I I I

Worst case (N=32)
Worst case (N=16) -+---

".,\ Worst case (N = 8) -B--'

\ \ Q-bound (N=32) --x
\ _ Q-bound (N=16) --_--
\ _,. Q-bound(N=8) +--[3-• "..- _ !F'-,'-k

•, _N-..... -- - ---I-......... "F -_._=---_-:-,-,_,,,-,--_::_::----._---------_-----:,--_
1 2 3 4 5 6 7 8 9 10

Laziness

(b)

Induction
Ratio

32

28

24

20

16

12

8

4

0

I I I I I I I I

Worst case _ -
_\ Qmbound (Q=5) -+--" _

\\ Q-bound (Q--4) -B--.

\ Q-bound (Q=3) ---x.......

_i _ '_ Q-bound (Q=2) -,a-.- _
I

1 2 3 4 5 6 7 8 9 10
Laziness

(a)

Figure 6: (a) Worst-case induction ratio and the Q - bounds (Q=2) for various N (b) worst-case

induction ratio (N = 32) and the Q - bounds for various Q.

14

independent parallel language [39]. Programs written in the Chare Kernel language can run un-

changed on both shared-memory and distributed-memory machines such as Encore Multimax, Se-

quent Symmetry, Intel iPSC/2 and i860 hypercubes and a network of Sun workstations. Program

traces used in this paper are collected from an Multimax 510.

The four programs include two newly developed CAD applications, Test generation and Logic

synthesis, and two search applications, Knight tour and N queen. The execution times are between

25 and 45 minutes (see Table 1). The total number of messages ranges from tens to hundreds of

thousands. Our simulation uses the following scheme for inserting checkpoints. The predetermined

minimum basic checkpoint interval is chosen to be 2 minutes. A variable Next_CP_Time is initialized

to 2 minutes. Each processor checks its local clock after processing every 100 messages, ff the clock

time exceeds Nezt_CPoTime, a basic checkpoint is inserted and Next_CP_Time is incremented by

2 minutes. The resulting average basic checkpoint interval (CPI) for each program is listed in

Table 1. Before processing each message, the processor also checks if an induced checkpoint and

the corresponding update of the ordinal number counter are necessary, as described in Section 3.

All reported numbers are averaged over five runs.

Table 1: Execution and checkpoint parameters of the Chare Kernel programs.

Programs Test Logic Knight N

generation synthesis tour queen

Number of processors ._ 8 6 8 6

Execution time (sec) 2,076 1,736 2,436 1,567

Number of messages 28,219 411,733 104,17ff 25,880

Average number of basic

checkpoints per processor 12.6 11.8 18.0 10.5

158 140 139Average basicCPI (sec)

Q 2.48 1.55

97.0% 100%Under-2 percentage

132

1.42

lOO%

We expect the variation of the basic checkpoint interval to be small because of the way it is

maintained. In particular, we choose Q = 2 to estimate the induction ratio. The exact value of

Q for each program is listed in Table 1. Although Q is slightly greater than 2 for the first two

programs, the numbers listed in the row of "Under-2 percentage" shows that a very high percentage

15

Average 2.5
Rollback
Distance 2

(# basic CPIs)

1.5

1

0.5

0

I I I

Estimated _ .:;-.j
- Test generation -+--- ..__

Logic synthesis - []-- _..J_.-_-
. Knight tour -.x _._..e._._ _

N queen -a-.- _..__

..- :._2_"
••-=_ _..-- --.

I I I

1 2 3 4 5
Laziness

Figure 8: Average rollback distance as a function of the laziness.

of the basic checkpoint intervals are covered by O = 2. Also, since the Q - bound is insensitive to

the exact value of Q, Q = 2 should suffice for our purpose. Fig. 7 plots the Q - bounds against the

worst-case and the actual induction ratios for the four programs. It is shown that the (2 - bound

provides a good estimation of the induction ratio for real applications. The large difference in the

ratio between Z = 1 and Z > 2 confirms that our generalization of the idea of communication-

induced checkpoint coordination as described in [35] can significantly reduce the extra checkpoint
t

overhead.

Fig. 8 gives the average rollback distances in terms of the number of average basic CPIs. The

almost linear behavior can be explained as follows. Every N basic checkpoints bi,k's, 0 < i < N - 1,

are taken at approximately the same time t_. If any one of them, say bj,k, is CP..nZ, then either bi,k

is consistent with bj,_ or CPi,ng is induced shortly due to the relatively large number of messages.

Hence, a recovery line is formed around tk. For Z = 1, that means the average rollback distance is

at most 0.5 basic CPI and the exact value will depend on the offset between bi,k's at run-time. For

Z > 2, as long as some CPi,nz's are induced before bi,k's are initiated, bi,_'s become CPi,nz+l's and

one of bi,k+(Z_l)'S will become CP.,(n+I)z which means a new recovery line will very likely to exist

around tk+(z-1). Therefore, the average rollback distance is approximately (Z - 1)/2 basic CPIs

as shown by the curve named "Estimated" in Fig. 8. It becomes clear that Figs. 7 and 8 provide a

17

flexible trade-off between run-time overhead and recovery efficiency.

6 Concluding Remarks

We have proposed the technique of lazy checkpoint coordination and incorporated it into the in-

dependent checkpointing protocol as a mechanism for bounding rollback propagation. The recovery

line is guaranteed to move forward by performing communication-induced checkpoint coordination

only when the predetermined consistency criterion is about to be violated. The notion of laziness

was introduced to provide the trade-off between extra checkpoint overhead during normal execution

versus the average rollback distance for recovery. Overhead analysis shows that the upper bound on

the induction ratio, i.e., the number of induced checkpoints divided by the number of basic check-

points, is related to the maximum ratio between the basic checkpoint intervals. Communication

trace-driven simulation results for several parallel programs showed that our analysis can provide a

good estimation for the induction ratio, and lazy checkpoint coordination can significantly reduce

the extra checkpoint overhead for real applications.

Acknowledgement

The authors wish to express their sincere thanks to B. Ramkumar, K. De and P. Banerjee for

their parallel programs and to L. V._Kal_ for access to the Chare Kernel.

[1]

[2]

[3]

[4]

References

K. Tsuruoka, A. Kaneko, and Y. Nishihara, "Dynamic recovery schemes for distributed pro-

cesses," in Proc. IEEE 2nd Syrup. on Reliability in Distributed Software and Database Systems,

pp. 124-130, 1981.

B. Bhargava and S. R. Lian, "Independent checkpointing and concurrent rollback for recovery

- An optimistic approach," in Proc. IEEE Syrup. on Reliable Distr. Syst., pp. 3-12, 1988.

Y. M. Wang and W. K. Fuchs, "Optimistic message logging for independent checkpointing in

message-passing systems," in Proc. IEEE Syrup. on Reliable Distr. Syst., pp. 147-154, Oct.
1992.

A. Lowry, J. K. Russell, and A. P. Goldberg, "Optimistic failure recovery for very large net-

works," in Proc. IEEE Syrup. on Reliable Distr. Syst., pp. 66-75, 1991.

18

[5] B. Randell, "System structure for software fault tolerance," IEEE Trans. on Software Engi-

neering, vol. SE-1, pp. 220-232, June 1975.

[6] P. A. Lee and T. Anderson, Fault Tolerance Principles and Practice. Springer-Verlag Wien,
1990.

[7] Y. M. Wang, A. Lowry, and W. K. Fuchs, "Checkpointing and rollback recovery for parallel
and distributed systems: A survey." In preparation, 1992.

[8] K. L. Wu and W. K. Fuchs, "Recoverable distributed shared virtual memory," IEEE Trans.

on Computers, vol. 39, pp. 460-469, Apr. 1990.

[9] K. H. Kim, J. H. You, and A. Abouelnaga, "A scheme for coordinated execution of indepen-

dently designed recoverable distributed processes," in Proc. IEEE Fault-Tolerant Computing

Symposium, pp. 130-135, 1986.

[10] K. H. Kim and J. H. You, "A highly decentralized implementation model for the Programmer-
Transparent Coordination (PTC) scheme for cooperative recovery," in Proc. IEEE Fault-

Tolerant Computing Symposium, pp. 282-289, 1990.

[11] K. Venkatesh, T. Radhakrishnan, and H. F. Li, "Optimal checkpointing and local recording
for domino-free rollback recovery," Information Processing Letters, vol. 25, pp. 295-303, July

1987.

[12] A. Borg, J. Baumbach, and S. Glazer, "A message system supporting fault-tolerance," in Proc.

9th ACM Syrup. on Operating Systems Principles, pp. 90-99, 1983.

[13] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W. Oberle, "Fault tolerance under UNIX,"

ACM Trans. on Computer Systems, vol. 7, pp. 1-24, Feb. 1989.

[14] M. L. Powell and D. L. Presotto, "Publishing: A reliable broadcast communication mecha-

nism," in Proc. 9th ACM Symp_. on Operating Systems Principles, pp. 100-109, 1983.

[15] R. E. Strom and S. Yemlni, "Optimistic recovery in distributed systems," ACM Trans. on

Computer Systems, vol. 3, pp. 204-226, Aug. 1985.

[16] A. P. Sistla and J. L. Welch, "Efficient distributed recovery using message logging," in Proc.

8th A CM Symposium on Principles of Distributed Computing, pp. 223-238, 1989.

[17] D. B. Johnson and W. Zwaenepoel, "Recovery in distributed systems using optimistic message

logging and checkpointing," J. of Algorithms, vol. 11, pp. 462-491, 1990.

[18] T. T.-Y. Juang and S. Venkatesan, "Crash recovery with little overhead," in Proc. IEEE Int'l

Conf. on Distributed Computing Systems, pp. 454-461, 1991.

[19] D. B. Johnson and W. Zwaenepoel, "Sender-based message logging," in Proc. IEEE Fault-
Tolerant Computing Symposium, pp. 14-19, 1987.

[20] R. E. Strom, D. F. Bacon, and S. A. Yemini, "Volatile logging in n-fault-tolerant distributed

systems," in Proc. IEEE Fault-Tolerant Computing Symposium, pp. 44-49, 1988.

19

[21] E. N. Elnozahyand W. Zwaenepoel, "Manetho: Transparent rollback-recovery with low over-
head, limited rollback and fast output commit," IEEE Trans. on Computers, vol. 41, pp. 526-

531, May 1992.

[22] Y. Tamir and C. H. Sequin, "Error recovery in multicomputers using global checkpoints," in
Proc. Int'l Conf. on Parallel Processing, pp. 32-41, 1984.

[23] K. G. Shin and Y.-H. Lee, "Evaluation of error recovery blocks used for cooperating processes,"

IEEE Trans. on Software Engineering, vol. 10, no. 6, pp. 692-700, 1984.

[24] K. M. Chandy and L. Lamport, "Distributed snapshots: Determining global states of dis-

tributed systems," ACM Trans. on Computer Systems, vol. 3, pp. 63-75, Feb. 1985.

[25] T. H. Lal and T. H. Yang, "On distributed snapshots," Information Processing Letters, vol. 25,

pp. 153-158, May 1987.

[26] K. Li, J. F. Naughton, and J. S. Plank, "Checkpointing multicomputer applications," in Prac.

IEEE Syrup. on Reliable Distr. Syst., pp. 2-11, 1991.

[27] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel, "The performance of consistent check-

pointing," in Proc. IEEE Syrup. on Reliable Distr. Syst., pp. 39-47, Oct. 1992.

[28] R. Koo and S. Toueg, "Checkpointing and rollback-recovery for distributed systems," IEEE

Trans. on Software Engineering, vol. SE-13, pp. 23-31, Jan. 1987.

[29] P. Ramanathan and K. G. Shin, "Checkpointing and rollback recovery in a distributed system

using common time base," in Proc. IEEE Syrup. on Reliable Distr. Syst., pp. 13-21, 1988.

[30] F. Cristian and F. Jahanian, "A timestamp-based checkpointing protocol for long-Uved dis-

tributed computations," in Proc. IEEE Syrup. on Reliable Distr. Syst., pp. 12-20, 1991.

[31]

[32]

[33]

[34]

[35]

[36]

Z. Tong, R. Y. Kaln, and W. T. Tsal, "Rollback recovery in distributed systems using loosely

synchronized clocks," IEEE Trans. on Parallel and Distributed Systems, vol. 3, pp. 246-251,
Mar. 1992.

J. Long and W. K. Fuchs, "An evolutionary approach to coordinated checkpointing." to be

submitted to IEEE Trans. on Parallel and Distributed Systems, 1992.

P. Keleher, A. L. Cox, and W. Zwaenepoel, "Lazy release consistency for software distributed

shared memory," in Proc. Int'l Syrup. on Computer Architecture, pp. 13-21, 1992.

A. Gafni, "Rollback mechanisms for optimistic distributed simulation systems," in Proc. SCS

Multiconference on Distributed Simulation, pp. 61-67, July 1988.

D. Briatico, A. Ciuffoletti, and L. Simoncini, "A distributed domino-effect free recovery algo-

rithm," in Proc. IEEE 4th Syrup. on Reliability in Distributed Software and Database Systems,
pp. 207-215, i984.

R. D. Schlichting and F. B. Schneider, "Fail-stop processors: An approach to designing fault-

tolerant computing systems," ACM Trans. on Computer Systems, vol. 1, pp. 222-238, Aug.
1983.

2O

[37]Y. M. Wang,P. Y. Chung,I. J. Lin, and W. K. Fuchs, "Checkpoint space reclamation for

independent checkpointing in message-passing systems." Tech. Rep. CRHC-92-06, Coordinated

Science Laboratory, University of hlinois at Urbana-Champaign. Submitted to IEEE Trans.

on Parallel and Distributed Systems, 1992.

[38] Y. M. Wang and W. K. Fuchs, "Scheduling message processing for reducing rollback propaga-

tion," in Proc.-IEEE Fault-Tolerant Computing Symposium, pp. 204-211, July 1992.

[39] W. Shu and L. V. Kald, "Chare kernel - A runtime support system for parallel computations,"
J. Parallel and Distributed Computing, vol. 11, pp. 198-211, 1991.

21

